IIIT-Synthetic-IndicSTR-Manipu

Language

Manipuri

Modality

Scene Text

Details Description

The IIIT-Synthetic-IndicSTR-Manipuri dataset consists of synthetically created 2M word images along with their corresponding annotations. To create synthetic images, freely available Unicode fonts are used to render synthetic word images. We use ImageMagick, Pango, and Cairo tools to render text onto images. To mimic the typical document images, we generate images whose background is always lighter (higher intensity) than the foreground. Each word is rendered as an image using a random font. Font size, font styling such as bold and italic, foreground and background intensities, kerning, and skew are varied for each image to generate a diverse set of samples. A random one-fourth of the images are smoothed using a Gaussian filter with a standard deviation (𝜎) of 0.5. Finally, all the images are resized to a height of 32 while keeping the original aspect ratio. This dataset is divided into Training, Validation, and Test Sets consisting of 1.5M, 0.5M, and 0.5M word images and their corresponding ground truth transcriptions. There are 1,13,632 Manipuri words in the training set.

Training Set:

train.zip contains folder named “images” with 1.5M word level images, “train_gt.txt” containing image name and ground truth text separated by “Tab space” and “vocabulary.txt” contains list of 1,13,632 words in the Training set.

Validation Set:

val.zip contains folder named “images” with 0.5M word level images, and “val_gt.txt” containing image name and ground truth text separated by “Tab space”.

Test Set:

test.zip contains folder named “images” with 0.5M word level images, and “test_gt.txt” containing image name and ground truth text separated by “Tab space”.

Downloads

To download Train, Test or Val data, please Login

Login Sign Up

Sample Word Level Images from Training Set

Image Ground Truth
āĻ¤ā§‹āĻ˛ā§‹āĻ•
āĻ˛ā§ˆāĻœāĻ–ā§āĻ°āĻ¸āĻ¨ā§
āĻ™āĻžāĻ‡āĻ°āĻŽāĻĻā§āĻ¨āĻž
āĻ•āĻ‚āĻ˛āĻŦāĻĻāĻž
āĻ˛ā§āĻ™ā§āĻ—āĻŋāĻĻā§ŒāĻ¨āĻž
āĻĒāĻžāĻ•āĻ–āĻ¨
ā§ŸāĻžāĻ“āĻŦāĻĻā§āĻ¸ā§
āĻ›ā§āĻŸāĻŋ
āĻšā§‹āĻ‚āĻ˛āĻ•āĻ‡
āĻšā§ˆāĻ°āĻŋāĻ¨ā§‡
āĻ¸āĻ¨āĻžāĻ¨ā§‹
ā§ŸāĻžāĻ°āĻ•ā§āĻ˛ā§‡
āĻļāĻžāĻ“āĻ—ā§ŽāĻĒāĻĻāĻž
āĻ˛ā§ˆāĻĻā§Œ
āĻ˛ā§ˆāĻ°ā§āĻŦāĻĻā§
āĻ¨ā§āĻĒā§€-āĻ…āĻ™āĻžāĻ‚āĻļāĻŋāĻ‚āĻ¨āĻž
āĻ•āĻ¨āĻžāĻ—ā§€āĻĻāĻŽāĻ•ā§āĻ¨ā§‹
āĻļāĻŋā§ŽāĻĒā§āĻ°āĻž
āĻ•ā§ŽāĻ–āĻŋāĻŦāĻ¨āĻŋ
ā§ąāĻžāĻ°ā§āĻĻāĻ¤āĻž
āĻšāĻžāĻ¨ā§āĻ¨āĻĻāĻŋ
āĻšā§‹āĻ‚āĻ–ā§āĻ°āĻŦāĻĻāĻž
āĻ˛ā§āĻŽāĻžāĻ‚āĻĻāĻž
āĻšāĻžā§āĻœāĻŋāĻ˛ā§āĻ˛āĻ•ā§āĻ˛āĻŦāĻž
āĻˆāĻšāĻžāĻ“āĻ—ā§āĻŽ
āĻšāĻ˛āĻžāĻ‡āĻ°āĻŋāĻŦāĻ¨āĻŋāĻ¨āĻž
āĻ…ā§ąāĻž-āĻ¨ā§āĻ‚āĻļāĻŋ
āĻšā§āĻŽā§āĻ¨āĻĻāĻž
āĻļāĻžāĻ°āĻ¸āĻŋ
āĻ™āĻžāĻ‡āĻ°āĻ•āĻĒāĻĻāĻŋ
āĻ…āĻĢāĻžāĻ“āĻŦā§€āĻ¸āĻŋāĻĻāĻŋ
āĻĒā§‹ā§ŽāĻ˛ā§āĻŽāĻĻā§
āĻ˛āĻŋā§ŽāĻ˛ā§āĻŦāĻĻā§āĻ¨āĻž
āĻĒā§āĻ¨āĻļāĻŋāĻ˛ā§āĻ˛āĻŋ
ā§ąāĻžāĻ™āĻžāĻ‚-ā§ąāĻžāĻšā§ˆāĻļāĻŋāĻ‚āĻĻā§
āĻĒāĻ™āĻ˛āĻŽā§āĻŦāĻž
ā§ąāĻžāĻ™āĻ˛
āĻ¸ā§āĻŽāĻŋāĻ¤āĻžāĻ—ā§€
āĻ‡āĻļā§‡āĻ‚
āĻŠā§ŽāĻ•āĻ¨āĻŋ
āĻšā§āĻŽāĻœāĻŋāĻ˛ā§āĻ˛āĻ•āĻĒāĻž
āĻ•āĻžā§ŸāĻĻā§‹āĻ™āĻĢāĻŽ
āĻ•āĻ•āĻĨā§ŽāĻĒā§€āĻ°ā§‹
āĻšāĻžāĻ¨āĻŋāĻ‚āĻĻā§‡āĻ•ā§‹
āĻĨāĻŋāĻ˛ā§āĻ˛āĻ•āĻĒāĻž
āĻ¨āĻžāĻ•ā§āĻ¤āĻ—ā§€
āĻŦāĻŦāĻžāĻŦā§
āĻšāĻžāĻ‰āĻŦā§€āĻ¨āĻž
āĻ¤ā§ŒāĻœāĻ°āĻ•ā§āĻ¤ā§āĻ°āĻŋāĻŦāĻ¨āĻŋ
āĻŦāĻ¨ā§āĻĻāĻŋāĻ—ā§āĻŽ
āĻŽā§ˆāĻ¨ā§€āĻ‚
āĻ…āĻļāĻŽā§āĻŦāĻž
āĻšā§ˆāĻĨāĻ°āĻ—ā§‡
āĻļā§āĻĨāĻžāĻ¨ā§‡āĻĻā§
āĻĒā§āĻ°āĻŋāĻŦāĻž
āĻšā§€āĻĒā§āĻ˛āĻŋāĻŦāĻž
āĻ–āĻ¨ā§āĻĨāĻ¨āĻ°āĻ—āĻž
āĻĢā§ŒāĻ°ā§‹ā§ŸāĻ¨āĻž
āĻˇā§āĻŸā§‡āĻ¨ā§‹
āĻŽāĻžā§ŸāĻĨā§€āĻŦāĻĻāĻ‡
āĻ˛ā§‚āĻ•ā§āĻ˛āĻžāĻ™
āĻ¨ā§‹āĻ•āĻĒāĻĻā§āĻĻāĻž
āĻ…āĻ¤ā§ŒāĻŽā§āĻŦā§€āĻ¨āĻž
āĻŽā§‹āĻ‡āĻŦā§āĻ‚āĻ—ā§€
āĻĨāĻŋāĻ‚āĻ˛āĻ—āĻ¨āĻŋ
āĻŽāĻĢāĻŽāĻĻā§āĻŦā§
āĻŽāĻĨā§‹āĻ‚-āĻŽāĻ°āĻŽ
āĻ˛āĻŽā§ŸāĻžāĻ¨āĻŦāĻ¨āĻŋāĨ¤
āĻ§ā§€āĻ°ā§‡āĻ¨āĻ—ā§€
āĻŦāĻžāĻŦāĻžāĻ—
āĻŽāĻ¤ā§‡āĻ•ā§āĻ•ā§€
ā§ŸāĻžāĻ“āĻ°āĻ°ā§‹āĻ‡āĻĻāĻŦā§€
āĻļāĻ™āĻ—ā§‹ā§ŸāĻ—ā§€
āĻ¤āĻžā§āĻœāĻ°ā§‡āĻĻāĻž
āĻ‡āĻĒā§‹āĻšāĻ˛āĻ¨āĻž
āĻĒā§āĻ¨āĻ–ā§ŽāĻ˛āĻŋ
āĻļāĻ™ā§āĻ—āĻŋāĻ¨
āĻ–ā§‹āĻ™āĻ‰āĻĒā§āĻ¨āĻšāĻŋāĻ‚āĻŦāĻž
āĻļāĻ–ā§€āĻ¨āĻž
āĻ˛ā§‡āĻ•āĻšāĻ°
āĻšāĻžāĻŽāĻŋāĻ¨ā§āĻ¨āĻ—āĻ¨āĻŋ
āĻŽā§€āĻ—ā§€āĻĻāĻŋāĻ¨ā§‡
āĻšāĻ™āĻ˛āĻ•ā§āĻ¤ā§‡
āĻšā§ŽāĻ˛āĻŋāĻŦāĻ¨āĻŋ
āĻĒāĻžāĻ‚āĻŦāĻŋāĻ–āĻŋāĻŦāĻž
āĻŸā§‡āĻ•ā§āĻ¨āĻŋāĻ•ā§‡āĻ˛
āĻŽāĻžā§ŸāĻĨā§€āĻ–āĻŋ
ā§ŸāĻžāĻ‡āĻĢāĻŦā§€
āĻ…āĻ¤ā§‡āĻ•-āĻ…āĻ°āĻžāĻ•
āĻŦā§‡āĻ—āĻļāĻŋ
āĻļā§‚āĻœ-āĻ¨ā§‹āĻŽāĻœāĻŦāĻž
āĻ˛āĻžāĻ‰āĻ°āĻ•āĻĒāĻĻāĻž
āĻšāĻžā§ŸāĻĢā§‡ā§ŽāĻ¨āĻž
āĻ¤ā§āĻ°ā§‹āĻ‚
āĻĨā§āĻ—āĻžāĻ‡āĻ¨āĻ¨āĻŦāĻ—ā§€āĻĻāĻŽāĻ•
āĻĨā§‹āĻ•ā§āĻ•āĻĻā§ŒāĻŦāĻ°ā§‹
āĻ•ā§ā§āĻĒā§āĻ¨āĻĻāĻŋ
āĻšāĻ•āĻļā§‡āĻ˛
āĻŽāĻžāĻ¨-āĻšāĻžāĻ‚
āĻĨā§‹āĻ™āĻ¨āĻžāĻ“āĻ¸āĻŋāĻĻāĻž

Citation

If you use this dataset, please refer these papers

@inproceedings{mathew2017benchmarking, 
  title={Benchmarking scene text recognition in Devanagari, Telugu and Malayalam}, 
  author={Mathew, Minesh and Jain, Mohit and Jawahar, CV}, 
  booktitle={2017 14th IAPR international conference on document analysis and recognition (ICDAR)}, 
  volume={7}, 
  pages={42--46}, 
  year={2017}, 
  organization={IEEE} 
} 

@inproceedings{gunna2021transfer, 
  title={Transfer learning for scene text recognition in Indian languages}, 
  author={Gunna, Sanjana and Saluja, Rohit and Jawahar, CV}, 
  booktitle={International Conference on Document Analysis and Recognition}, 
  pages={182--197}, 
  year={2021}, 
  organization={Springer} 
} 

@inproceedings{lunia2023indicstr12, 
  title={IndicSTR12: A Dataset for Indic Scene Text Recognition}, 
  author={Lunia, Harsh and Mondal, Ajoy and Jawahar, CV}, 
  booktitle={International Conference on Document Analysis and Recognition}, 
  pages={233--250}, 
  year={2023}, 
  organization={Springer} 
} 

Feedback form