IIIT-Synthetic-M-Hindi

Language

Hindi

Modality

Printed

Details Description

The IIIT-Synthetic-M-Hindi dataset consists of synthetically created 2,78,248 word images along with their corresponding annotations. To create synthetic images, freely available Unicode fonts are used to render synthetic word images. The number of unique fonts used for Hindi is 97. We use ImageMagick, Pango, and Cairo tools to render text onto images. To mimic the typical document images, we generate images whose background is always lighter (higher intensity) than the foreground. Each word is rendered as an image using a random font. Font size, font styling such as bold and italic, foreground and background intensities, kerning, and skew are varied for each image to generate a diverse set of samples. A random one-fourth of the images are smoothed using a Gaussian filter with a standard deviation (ЁЭЬО) of 0.5. Finally, all the images are resized to a height of 32 while keeping the original aspect ratio. This dataset can be used only for pre-training purposes. There are 24,604 unique Hindi words in the training set.

Training Set:

train.zip contains folder named тАЬimagesтАЭ with 2,78,248 word level images, тАЬtrain_gt.txtтАЭ containing image name and ground truth text separated by тАЬTab spaceтАЭ and and тАЬlist_of_unique_words.txtтАЭ contains list of 24,604 unique words in the Training set.

Downloads

Train Test Logout

Sample Word Level Images from Training Set

Image Ground Truth
рддреЛ
рд╕реЗ
рдЕрдкрдиреЗ
рдЪрд▓рд╛
рднреВрд▓
рдХрд╛
рдХрд╛рд╡рд╕рдЬреА
рдХреБрдЫ
рдиреЗ
рдЬрд┐рд╕
рдКрдВрдЪреА
рд╣реИ
рдЕрдзрд┐рдХ
рд╣реИ,
рдЖрд╡рд╛рдЬреЛрдВ
рдмрдирд╛рдпрд╛
рд░рд╛рдд
рдЖрдЧреЗ
рдФрд░
рдХреИрд╕реЗ
рдЖрдпрд╛
рдХреНрдпрд╛
рдХреЛ
рди
рдФрд░
?
рддреЛ
рдЕрд╡рд╕рд░
рд╕рдордЭрддреЗ
рджрд░рдмрд╛рд░
рд╡реЗ
рдкрд╛рд╕,
ред
рдЖрдЬреНрдЮрд╛
ред
рд░рдЦрдирд╛
рд╡рд╣
рдореМрдВрдиреЗ
рддреЛ
рдХрдард┐рди
рдпрд╣
рдкрд░
рд░реЗ?"
рдЙрдирдореЗрдВ
рдЬреЗрд▓рдореЗрдВ
рдЙрд╕рдХреА
рд╣реА
рд╣реИ
рджрд┐рди
рджреЗрддреА
рд░рддрди
рдЙрд╕рд╕реЗ
?
рджреЗрдЦреЗрдВрдЧреЗ
рд░реЛрддреЗ-рд░реЛрддреЗ
рдФрд░
рдХреНрдпрд╛
рдХреЛ
рдЕрдкрдиреЗ
рдХрдИ
рдФрд░
рдЬрд╡рд╛рдм
рд╢рд┐рдХрд╖рд╛
рдкрдВрдХреНрддрд┐рдпрд╛рдВ
рдпрд╣
рдореБрдЭрд╕реЗ
рдХрд╛рд░реНрдпрдордЧреНрди
рдмреЬреЗ
рд╕реЗ
рдЖрдБрд╕реВ
рдкреВрдЫ
рдмрд╛рддреЗрдВ
рд▓рд┐рдП
рдЧрдореНрднреАрд░
ред
рд╡рд╣-рд╣реЗрдВ
рдпрд╣
рд╣реЛ
ред
рдирд╛рд╣рдХ
рд░рд╣реЗ
рд╣реЛрдХрд░
рднреА
рдкреЬреЗ,
рдорд╛рд▓реВрдо
рдореЗрдВ
рдХреА
рдирд╛рд░рд┐рдпрд▓
;
ред
рдХрд┐
рднреА
рдЬрд┐рддрдирд╛
рдФрд░
тАЬрдЗрд╕реАрд▓рд┐рдП
рдХрд╣рдХрд░
рдЖрдпреЗ
рдЙрд▓реНрдЯрд╛
рдФрд░
ред

Citation

If you use this dataset, please refer this paper

@article{mathew2022empirical, 
  title={An empirical study of CTC based models for OCR of Indian languages}, 
  author={Mathew, Minesh and Jawahar, CV}, 
  journal={arXiv preprint arXiv:2205.06740}, 
  year={2022} 
} 

Feedback form