IIIT-Synthetic-IndicSTR-Assame

Language

Assamese

Modality

Scene Text

Details Description

The IIIT-Synthetic-IndicSTR-Assamese dataset consists of synthetically created 2M word images along with their corresponding annotations. To create synthetic images, freely available Unicode fonts are used to render synthetic word images. We use ImageMagick, Pango, and Cairo tools to render text onto images. To mimic the typical document images, we generate images whose background is always lighter (higher intensity) than the foreground. Each word is rendered as an image using a random font. Font size, font styling such as bold and italic, foreground and background intensities, kerning, and skew are varied for each image to generate a diverse set of samples. A random one-fourth of the images are smoothed using a Gaussian filter with a standard deviation (𝜎) of 0.5. Finally, all the images are resized to a height of 32 while keeping the original aspect ratio. This dataset is divided into Training, Validation, and Test Sets consisting of 1.5M, 0.5M, and 0.5M word images and their corresponding ground truth transcriptions. There are 77,352 unqiue Assamese words in the training set.

Training Set:

train.zip contains folder named “images” with 1.5M word level images, “train_gt.txt” containing image name and ground truth text separated by “Tab space” and “vocabulary.txt” contains list of 77,352 words in the Training set.

Validation Set:

val.zip contains folder named “images” with 0.5M word level images, and “val_gt.txt” containing image name and ground truth text separated by “Tab space”.

Test Set:

test.zip contains folder named “images” with 0.5M word level images, and “test_gt.txt” containing image name and ground truth text separated by “Tab space”.

Downloads

Train Test Val Logout

Sample Word Level Images from Training Set

Image Ground Truth
āĻāĻ–āύ-āĻĻ⧁āĻ–āύāĻ•ā§ˆ
ā§Žā§Ģ
ā§§ā§Ž
āĻŽāĻžāĻšāĻžāĻ¤ā§āĻŽā§āϝ
āύāĻŋāϜāĻ¸ā§°ā§āĻŦāĻļāĻ•ā§āϤāĻŋ-
āĻšāĻžāϟāĻŦāĻžā§°ā§°
āĻŽāĻŋāϞāύ-āφāϕ⧰⧇
āĻ…āĻŸā§āϟāĻšāĻžāĻ¸ā§āϝ
āϏ⧁āĻŽāĻžāĻŖ
āĻ…ā§°ā§ąāĻŋāĻ¨ā§āĻĻ⧇
āĻĢ⧁āϞāύāĻŋāĻŦāĻžā§°ā§€
āĻĒāĻžāϗ⧁āϞāĻŋ
āĻŦāĻšāĻžā§°āĻĒā§°āĻž
āω⧰āĻ¨ā§āϤ
āĻĒā§°āĻŋāϞāĻšā§‡āρāϤ⧇āύ
-āĻŦāĻ¨ā§āĻĻā§€
āĻšā§ā§°-āĻšā§ā§°āĻžāχ
āϠ⧇āĻ™ā§€ā§ŸāĻž
āĻ­āĻ¨ā§€ā§Ÿā§‡āϕ⧰
āĻ…ā§ąāĻļ⧇
āĻĻ⧃āĻ¸ā§āϝāϤ⧇
āĻ•āĻ˛ā§āϝāĻžāϪ⧇
āĻ˜ā§œā§€āĻŸā§‹
āĻĒā§°āĻŋāϞ⧇
āĻŦāĻŋāĻ­ā§€āώāĻŖ-āĻĨāĻžāύ
āĻ•āĻžāϞāĻŋāĻŽāĻžā§°
āĻ•āĻŋāϛ⧁āϛ⧂⧰
āϜāĻžāύāĻžāĻŽā§āϝāϧāĻŽāĻ‚
āĻŦāĻžāĻŖ-āĻ­āĻ—āĻĻāĻ¤ā§āϤ-āϚ⧁āĻ•āĻžāĻĢāĻž
⧝⧧ā§Ģ
āĻŦāĻŋāϞāĻžāϏ-āĻ­ā§‹āĻ—āϤ
āύ⧟āύāϤ
āωāĻĻā§āϧāϤ⧋
āĻĒā§āϰāĻžā§°ā§āĻĨāĻŋā§°
āĻļāĻ•ā§āĻ¤ā§āϝāĻž
āĻ“āĻĒā§°āϤāϞāĻžāϤ
āĻĻ⧁āĻ–āϜāĻŋāĻ•ā§ˆ
āĻ•āĻžāĻ—āϜāĻ–āύ⧰
āĻ­ā§‹āĻ—āĻžā§Ÿā§‡āĻ“
āĻ…āĻ¸ā§āĻ¤ā§ā§°-āĻļāĻ¸ā§āĻ¤ā§āϰ
āϤ⧀⧰āϤ
āĻ›āĻžāĻĄāĻŧā§‹
āφāĻ—āϤ-
āĻ­āĻ•āϤāĻŋ-ā§°āĻ•āϤāĻŋ
ā§¯ā§Žā§Ģ
āϕ⧰āĻŋāĻŦā§°ā§‹
āĻ¤ā§ā§°ā§āϟāĻŋ
āϤāĻŋāϞ⧇
āĻŽā§‚ā§°ā§āĻĻā§āϧāĻž
āϝ⧇āύāĻŽāϤ⧇
āĻĒā§āϰāĻŋ⧟āϜāύāϤ⧋
āĻ…āĻ­āĻŋāĻŦāĻžāĻĻāύ
āĻŦ⧁āĻĸāĻŧā§€ā§Ÿā§‡
āϞāĻžāϞ⧀⧰⧇
āωāĻ āĻžāϤ
āϏāĻžāρāϕ⧋
āĻ­āĻžāĻ“āύāĻžāϤ⧇
āĻĒ⧁āĻŖā§āϝāϚ⧟
āĻ•āĻžāĻŽāύāĻž
āĻ•āĻĨāĻžāĻŸā§‹āĻ“
āϝāĻžāĻĻāĻŋ
āĻĒā§‹āĻšāĻžā§°āĻŋā§°
āĻļāĻŋā§°ā§€āώ
āĻ…āϤāĻŋāĻĨāĻŋ
āϏāĻšāĻ¸ā§ā§°-āύāĻžāĻŽ
āĻŦāĻŋāϞāĻžāϞāĻŋāϞ⧈
āϚāĻžāχāϕ⧋āϞāϤ⧇
āϕ⧇āύ⧇āϧ⧰āĻŖā§°
āĻŦāϟāϞāĻŸā§‹ā§°
āĻ…āĻĒā§°āĻžāϧ⧀⧰
āϭ⧁āĻŦāύ-āĻŦāĻŋāĻœā§Ÿā§€
āĻŦāĻšāĻŋāĻŦāϞ⧈
āĻ–ā§‡ā§ŸāĻžāϞ
āφāϘāĻžāϤ
āĻ…āĻ¸ā§āĻ¤ā§ā§°ā§°
āϧ⧁āύ⧁
āϛ⧁āĻŸā§‡
āĻĒāĻŋā§°ā§
āĻļāĻžāρāĻ•āύāĻž
āĻŦ⧁āϜāĻŋ⧟āĻž
āϝāĻžāĻšāĻžāĻ¨ā§āϤ
āϏāĻ‚āĻ•āĻ˛ā§āĻĒ
āĻ—āĻ›āĻŦā§‹ā§°
āχāĻ•āĻžāϪ⧇
āĻ•āĻžāĻĒā§‹ā§°āĻŸā§‹
āĻŦ⧁āĻĸāĻŧāĻž-āφāϙ⧁āϞāĻŋāĻŸā§‹ā§°ā§‡
āωāĻ¨ā§āύ⧀āϤ
āϜāĻšāĻž
āĻĻāĻŋā§ąāϏ⧇
āĻāώāĻžā§°āĻ•ā§ˆ
āĻ›āĻžāĻŽāĻžā§°
āϜāĻžāρāĻĒ⧇
āĻĒāĻŋāϚāĻĻāĻŋāύāĻžāĻ–āύ⧋
āĻ āĻžāχāĻĄā§‹āĻ–ā§°
āĻŦāĻžāĻĻā§āϝ⧇-āĻ­āĻŖā§āĻĄā§‡
āĻļāĻŋāĻ•āĻŋ
āĻ•āĻžāρāĻšāĻŋ-āĻŦāĻžāϟāĻŋā§°
āϚāĻŋāϤāĻž-āϜ⧁āχāϕ⧁⧰āĻž
āĻ•āĻžāĻ¨ā§āĻĻāĻŋāĻ›āĻž
āĻĻāĻžāρāϤāĻŋā§°

Citation

If you use this dataset, please refer these papers

@inproceedings{mathew2017benchmarking, 
  title={Benchmarking scene text recognition in Devanagari, Telugu and Malayalam}, 
  author={Mathew, Minesh and Jain, Mohit and Jawahar, CV}, 
  booktitle={2017 14th IAPR international conference on document analysis and recognition (ICDAR)}, 
  volume={7}, 
  pages={42--46}, 
  year={2017}, 
  organization={IEEE} 
} 

@inproceedings{gunna2021transfer, 
  title={Transfer learning for scene text recognition in Indian languages}, 
  author={Gunna, Sanjana and Saluja, Rohit and Jawahar, CV}, 
  booktitle={International Conference on Document Analysis and Recognition}, 
  pages={182--197}, 
  year={2021}, 
  organization={Springer} 
} 

@inproceedings{lunia2023indicstr12, 
  title={IndicSTR12: A Dataset for Indic Scene Text Recognition}, 
  author={Lunia, Harsh and Mondal, Ajoy and Jawahar, CV}, 
  booktitle={International Conference on Document Analysis and Recognition}, 
  pages={233--250}, 
  year={2023}, 
  organization={Springer} 
} 

Feedback form