IIIT-Synthetic-IndicSTR-Bengal

Language

Bengali

Modality

Scene Text

Details Description

The IIIT-Synthetic-IndicSTR-Bengali dataset consists of synthetically created 2M word images along with their corresponding annotations. To create synthetic images, freely available Unicode fonts are used to render synthetic word images. We use ImageMagick, Pango, and Cairo tools to render text onto images. To mimic the typical document images, we generate images whose background is always lighter (higher intensity) than the foreground. Each word is rendered as an image using a random font. Font size, font styling such as bold and italic, foreground and background intensities, kerning, and skew are varied for each image to generate a diverse set of samples. A random one-fourth of the images are smoothed using a Gaussian filter with a standard deviation (𝜎) of 0.5. Finally, all the images are resized to a height of 32 while keeping the original aspect ratio. This dataset is divided into Training, Validation, and Test Sets consisting of 1.5M, 0.5M, and 0.5M word images and their corresponding ground truth transcriptions. There are 4,49,429 Bengali words in the training set.

Training Set:

train.zip contains folder named “images” with 1.5M word level images, “train_gt.txt” containing image name and ground truth text separated by “Tab space” and “vocabulary.txt” contains list of 4,49,429 words in the Training set.

Validation Set:

val.zip contains folder named “images” with 0.5M word level images, and “val_gt.txt” containing image name and ground truth text separated by “Tab space”.

Test Set:

test.zip contains folder named “images” with 0.5M word level images, and “test_gt.txt” containing image name and ground truth text separated by “Tab space”.

Downloads

Train Test Val Logout

Sample Word Level Images from Training Set

Image Ground Truth
āĻ¨āĻšā§āĻ¸
āĻ°ā§‡āĻ—ā§āĻ—āĻžāĻŸāĻ¨
āĻŽāĻĻāĻĻāĻĒāĻĒā§āĻˇā§āĻŸ
āĻ•ā§āĻˇā§‡āĻ¤ā§āĻ°āĻ…āĻ¨ā§āĻ¯āĻžāĻ¯āĻŧā§€
āĻ¸āĻ°āĻŦāĻ°āĻžāĻšāĻ•ā§‡
āĻ˛ā§‹āĻ°ā§‡āĻžā§āĻœā§‹āĻ°
āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžāĻ°āĻžāĻ‡āĻœāĻĄā§
ā§¨ā§Ģā§Ŧā§Ŧā§Ģ
āĻšāĻŋāĻ˛ā§‡āĻ°
āĻ­āĻžāĻ°āĻ¨āĻžāĻ¨
āĻļāĻ™ā§āĻ•āĻ°
āĻ‰āĻ­āĻŽāĻ•āĻžāĻŽāĻŋāĻ¤āĻž
āĻ…āĻ­āĻŋāĻ¯āĻžāĻ¤ā§āĻ°ā§€āĻ—āĻŖ
āĻ—āĻžāĻ°āĻŋāĻ•āĻž
āĻĒā§ƒāĻˇā§āĻ āĻŽā§ƒāĻ¤ā§āĻ¤āĻŋāĻ•āĻžāĻ°
āĻ•āĻžāĻ°āĻŖāĻ—ā§āĻ˛āĻŋāĻ¤ā§‡
āĻ•ā§āĻŽāĻžāĻ¯āĻžāĻ“āĻ¯āĻŧāĻž
āĻ‡āĻ˛ā§‡āĻ•ā§āĻŸā§āĻ°āĻ¨
āĻŽāĻ°ā§āĻ¯āĻžāĻĻāĻžāĻ•ā§āĻ°āĻŽā§‡āĻ°
āĻ¸āĻŽāĻžāĻ¨ā§
āĻ˛ā§‹āĻ•āĻ•āĻĨāĻŋāĻ¤
āĻ–ā§‡āĻ˛āĻžāĻ¯āĻŧāĻ“
āĻ¸āĻŋāĻ˛āĻŋāĻ•āĻ¨ā§‡āĻ°
āĻŽāĻŋāĻ˛āĻŋāĻŸāĻžāĻ°
āĻĒāĻŋāĻ¤ā§‡āĻ°āĻŦā§āĻ°ā§āĻ—ā§‡
āĻŦāĻŋāĻˇāĻŽāĻ•āĻžāĻŽā§€āĻ°
āĻĻā§āĻŦāĻ¨ā§āĻĻā§āĻŦāĻžāĻ°ā§āĻĨ
āĻšā§āĻ•ā§āĻ¤āĻŋā§§ā§Žā§Ŧā§Ž
āĻĻāĻžāĻĄāĻŧāĻžāĻ¤ā§‡
āĻ˛āĻžāĻ‡āĻ¨āĻ†āĻĒā§‡āĻ°
āĻŽāĻžāĻĒāĻ¨ā§€āĻ¤ā§‡
āĻœāĻžāĻ¸ā§āĻŸāĻžāĻ¸
āĻšā§ŒāĻ°āĻ™ā§āĻ—ā§€āĻ°
āĻ¸āĻžāĻŽā§€āĻ°
āĻĢā§‡āĻ˛āĻ˛āĻžāĻŽ
āĻ¸ā§āĻ°āĻœāĻĒā§āĻ°
āĻāĻ•āĻ•āĻ•ā§āĻˇ
āĻŦāĻžāĻ¸āĻšāĻžāĻ˛āĻ•ā§‡āĻ°āĻž
āĻŽā§‚āĻ˛āĻ§āĻ¨ā§‡
āĻ•āĻŋāĻ›ā§āĻ¸ā§‚āĻ¤ā§āĻ°
āĻ†āĻ•ā§āĻ°āĻŽāĻŖāĻ•āĻžāĻ°ā§€āĻ•ā§‡
āĻŽā§āĻ¯āĻžāĻ•āĻĄā§āĻ¨ā§‡āĻ˛
āĻŽā§‹āĻšāĻ¨āĻŦāĻžāĻĄāĻŧāĻŋ
āĻāĻ˛āĻŽāĻ˛
āĻ—ā§āĻ°āĻ¨ā§āĻĨāĻ–āĻžāĻ¨āĻŋāĻ“
āĻŽāĻšāĻžāĻ¨āĻ—āĻ°ā§€āĻ•ā§‡
āĻ‡āĻŽāĻžāĻ°āĻ˛ā§‡āĻĄ
āĻŽā§‚āĻ˛ā§āĻ¯āĻ¸ā§āĻ¤āĻ°
āĻŦā§āĻ°āĻŋāĻœāĻ•āĻžāĻ˛āĻ­ā§āĻ°āĻžāĻŸ
āĻ…āĻ°ā§āĻĨāĻ¸āĻŽā§‚āĻš
āĻĒā§‡āĻœ
āĻ•āĻžāĻ›ā§‡
āĻ…āĻ°ā§āĻŖāĻžāĻ­
āĻĻāĻŋāĻ°āĻŋāĻ¯āĻŧāĻžāĻ¯āĻŧ
āĻ¤āĻžāĻœāĻ­ā§€āĻĻ
āĻļāĻŋāĻ‰
āĻ•ā§āĻ°āĻ¯āĻŧ
āĻšāĻŋāĻ°ā§‹āĻ‡āĻ•
āĻŽāĻžāĻ¯āĻŧā§‹āĻ—ā§āĻ˛ā§‹āĻŦāĻŋāĻ¨
āĻŦāĻŋāĻ¨ā§āĻĻā§‚āĻ°
āĻ†āĻ°ā§āĻŸāĻŋāĻ˛āĻžāĻ°āĻŋāĻ“
āĻ˛ā§āĻšā§‹āĻ•āĻž
āĻŦāĻŋāĻĒāĻ°ā§€āĻ¤āĻŽā§āĻ–ā§‹
āĻ¸āĻŽāĻ¯ā§‹āĻ¤āĻž
āĻ¤ā§āĻ°ā§āĻ•ā§‡āĻ°
āĻ­āĻŋāĻ—āĻ°ā§āĻ¸
āĻŸā§āĻ°āĻžāĻ‡āĻ—ā§āĻ˛āĻŋāĻ¸ā§‡āĻ°āĻžāĻ‡āĻĄāĻ¸
āĻœāĻŋāĻ°āĻ—āĻžāĻ°
āĻŽāĻžāĻ§āĻŦāĻžāĻšāĻžāĻ°ā§āĻ¯ā§‡āĻ°
āĻĄāĻžāĻ°ā§āĻ¸āĻŋāĻ°
āĻŦāĻŋāĻļā§āĻŦāĻžāĻ¸āĻŸāĻŋāĻ•ā§‡
āĻ¸āĻ‚āĻ•ā§āĻ°āĻŋāĻ¯āĻŧāĻšāĻžāĻ•āĻž
āĻŦāĻžāĻ¸āĻŋāĻ˛āĻžāĻ•āĻŋāĻ¸
āĻ•āĻŽāĻ˛āĻ¨āĻ—āĻ°ā§‡
āĻ†āĻ¤ā§āĻ¤ā§€āĻ•āĻžāĻ¤ā§‡
āĻĒāĻžāĻŸā§āĻŸāĻžāĻŦāĻ‚
āĻ­ā§āĻ¯āĻžāĻ˛ā§‡āĻ°āĻž
āĻ¨ā§ƒāĻ¸āĻŋāĻ‚āĻšāĻĒā§āĻ°āĻ¸āĻžāĻĻ
āĻŽāĻ§ā§āĻĒā§āĻ°āĻāĻŦāĻ‚
āĻ–āĻžāĻĻā§āĻ¯āĻŦāĻ¸ā§āĻ¤ā§āĻ¤āĻ°
āĻĒā§ƒāĻˇā§āĻŸ
āĻ¸ā§‡āĻœāĻĻāĻž
āĻ°āĻžāĻœā§āĻ¯āĻĻāĻ–āĻ˛
āĻŦāĻ˛ā§āĻ˛āĻ­ā§€āĻ°
āĻ°āĻžāĻˇā§āĻŸā§āĻ°āĻœā§āĻĄāĻŧā§‡
āĻĻāĻžāĻ¯āĻŧāĻŋāĻ¤ā§āĻŽāĻ­āĻžāĻ°
āĻšāĻŋāĻ¤ā§āĻ°āĻžāĻ¯āĻŧāĻ¨āĻ•ā§‡
āĻ˛āĻžāĻ‡āĻŦā§āĻ°ā§‡āĻ°ā§€āĻ¤ā§‡āĻ‡
āĻ¨ā§€āĻ°āĻžāĻ°
āĻ–ā§āĻ•āĻŋāĻ•ā§‡
āĻ¨āĻŋāĻ‰āĻ°ā§‹āĻ¨ā§‡āĻ°
āĻ‡āĻ¨ā§āĻĻā§‹āĻ¨ā§‡āĻļāĻŋāĻ¯āĻŧāĻžāĻ¯āĻŧ
āĻ¨āĻ¤āĻŋāĻ­ā§‚āĻ•ā§āĻ¤
āĻŸā§āĻ°āĻ¯āĻŧāĻ¯ā§āĻĻā§āĻ§āĻ•ā§‡āĻ¨ā§āĻĻā§āĻ°āĻŋāĻ•
āĻ¸āĻ—ā§āĻ¨āĻž
āĻ¸āĻžāĻŽā§āĻ¯āĻ•ā§‡
āĻ¨āĻŋāĻ‰āĻ•ā§āĻ˛āĻŋāĻ¯āĻŧāĻžāĻ¸āĻ—ā§āĻ˛āĻŋ
āĻŦāĻŋāĻ¨āĻŽāĻ¯āĻŧ
āĻ‡āĻžā§āĻœāĻŋāĻ¨āĻŋāĻ¯āĻŧāĻžāĻ°āĻŋāĻ‚ā§­
āĻŸāĻŋāĻ°āĻžāĻ¨ā§āĻŸ

Citation

If you use this dataset, please refer these papers

@inproceedings{mathew2017benchmarking, 
  title={Benchmarking scene text recognition in Devanagari, Telugu and Malayalam}, 
  author={Mathew, Minesh and Jain, Mohit and Jawahar, CV}, 
  booktitle={2017 14th IAPR international conference on document analysis and recognition (ICDAR)}, 
  volume={7}, 
  pages={42--46}, 
  year={2017}, 
  organization={IEEE} 
} 

@inproceedings{gunna2021transfer, 
  title={Transfer learning for scene text recognition in Indian languages}, 
  author={Gunna, Sanjana and Saluja, Rohit and Jawahar, CV}, 
  booktitle={International Conference on Document Analysis and Recognition}, 
  pages={182--197}, 
  year={2021}, 
  organization={Springer} 
} 

@inproceedings{lunia2023indicstr12, 
  title={IndicSTR12: A Dataset for Indic Scene Text Recognition}, 
  author={Lunia, Harsh and Mondal, Ajoy and Jawahar, CV}, 
  booktitle={International Conference on Document Analysis and Recognition}, 
  pages={233--250}, 
  year={2023}, 
  organization={Springer} 
} 

Feedback form